The energy of IPCC...
....or the IPCC of energy

Celine Guivarch

guivarch@centre-cired.fr

Science and Energy, 2018
Ecole de Physique des Houches
5 march 2018
What is the IPCC?

- The Intergovernmental Panel on Climate Change
- The United Nations body for assessing the science related to climate change
- 195 member states
- 3 working groups:
 - WGI: the physical science basis of climate change;
 - WGII: impacts, adaptation and vulnerability;
 - WG III: mitigation of climate change.

- “hybrid” scientific and intergovernmental nature
- “policy relevant, not policy prescriptive”
What does the IPCC do?

- provides policymakers with **regular scientific assessments** concerning climate change, its implications and risks, as well as adaptation and mitigation strategies.

- **reviews and assesses** the most recent scientific, technical and socio-economic information produced worldwide relevant to the understanding of climate change. It does not conduct any research nor does it monitor climate related data or parameters.

- identifies **where there is agreement** in the scientific community, **where there are differences of opinion**, and **where further research is needed**.

- mobilizes hundreds of scientists to produce its reports (but only a dozen permanent staff work in the IPCC’s Secretariat).
The process from scoping to publication of the report takes roughly 5 years.
Factsheet from AR5 WGIII report

<table>
<thead>
<tr>
<th>The Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 1 Scoping Meeting • 1 Summary for Policymakers • 16 Chapters • More than 1400 nominations from 85 countries • 235 Coordinating Lead Authors and Lead Authors and 38 Review Editors from 58 countries (^1) • 176 Contributing Authors from 35 countries (^2) • Close to 1200 scenarios of socioeconomic development analyzed • Close to 10,000 references to literature</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Reviews</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 38,315 comments • 836 Expert Reviewers from 66 countries • 37 Governments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The WGIII Approval Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 7-11 April 2014, Berlin, Germany • The Summary for Policymakers was approved line-by-line and accepted by the Panel, which has 195 member Governments</td>
</tr>
</tbody>
</table>
GAINING CONFIDENCE

EMF 12: Controlling Global Carbon Emissions - Cost and Policy Options, 14 models * 13 scenarios

SRES (Special Report on Emissions Scenarios)
- 4 « storylines »
- 40 scenarios
- 6 models

EMF 21: Multi-Gas Mitigation and Climate Change
- Inter-Model Comparison Project on endogenous technical change and climate change mitigation

EMF 27: Global Model Comparison Exercise
- EU-FP7 modeling comparison projects

Projects:
- 4 emissions scenarios * 2 economic growth scenarios
- 2 models
- 6 emissions scenarios, with varying assumptions on population, economic growth and fossil reserves
- 1 model
- 380 global emissions scenarios, of which 126 « mitigation scenarios »
- 26 models
- 750 scenarios
- 750 scenarios
- 1184 scenarios
- 30 models
Where is energy in IPCC reports?...

... everywhere!

Greenhouse Gas Emissions by Economic Sectors

- Energy and Heat Production: 25%
- AFOLU: 24%
- Buildings: 6.4%
- Transport: 14%
- Industry: 21%
- Other Energy: 9.6%

49 Gt CO₂eq (2010)

Direct Emissions

Indirect CO₂ Emissions
I POLICYMAKERS SUMMARY xix

II IPCC RESPONSE STRATEGIES WORKING GROUP REPORTS 1

1 Introduction 5
2 Emissions Scenarios 9

Subgroup Reports

3 Energy and Industry 45
4 Agriculture, Forestry, and Other Human Activities 73
5 Coastal Zone Management 129
6 Resource Use and Management 161

Implementation Measures

7 Public Education and Information 209
8 Technology Development and Transfer 219
9 Economic (Market) Measures 229
10 Financial Mechanisms 245
11 Legal and Institutional Mechanisms 257
SAR (1995): Economic and social dimensions of climate change

Summary for Policymakers

1 Introduction: Scope of the Assessment
2 Decision-Making Frameworks for Addressing Climate Change
3 Equity and Social Considerations
4 Intertemporal Equity, Discounting, and Economic Efficiency
5 Applicability of Techniques of Cost-Benefit Analysis to Climate Change
6 The Social Costs of Climate Change: Greenhouse Damage and the Benefits of Control
7 A Generic Assessment of Response Options
8 Estimating the Costs of Mitigating Greenhouse Gases
9 A Review of Mitigation Cost Studies
10 Integrated Assessment of Climate Change: An Overview and Comparison of Approaches and Results
11 An Economic Assessment of Policy Instruments for Combatting Climate Change
SAR, ch7: A generic assessment of response options

Summary

7.1 Introduction

7.2 A Conceptual Framework
 7.2.1 Mitigation options
 7.2.2 Adaptation options
 7.2.3 Indirect policy options

7.3 Criteria for Assessment

7.4 Mitigation Options
 7.4.1 Energy conservation and efficiency improvement
 7.4.2 Fossil fuel switching
 7.4.3 Renewable energy technologies
 7.4.4 Nuclear energy
 7.4.5 Capture and disposal

7.4.6 Enhancing sinks: Forestry options
 7.4.6.1 Costs

7.4.7 Methane

7.5 Adaptation Options
 7.5.1 Adaptation to what?
 7.5.2 How to adapt
 7.5.3 Adaptation measures in developing countries
 7.5.4 Modelling adaptation

7.6 An Integrating Approach

7.7 Regional Differences and International Cooperation

Endnotes

References
SAR, ch8: Estimating the costs of mitigating greenhouse gases

Summary

8.1 Introduction

8.2 Costs: Definitions and Determinants

8.2.1 How is cost measured?

8.2.2 Taxonomy of mitigation cost concepts

8.2.2.1 Gross costs, net costs, and the overall cost-benefit balance of mitigation strategies

8.2.3 Key factors affecting the magnitude of costs: Costs as a function of baselines and policy strategies

8.2.3.1 Baselines and magnitude of the “no-regret” potentials

8.2.3.2 Target setting: Level and timing

8.2.3.3 Policy instruments – the tax recycling issue

8.2.3.4 International dimensions of climate policies

8.3 Patterns of Development and Technological Change

8.3.1 Links between development patterns, technical change, and mitigation costs

8.3.1.1 The importance of the socioeconomic assumptions underlying scenarios

8.3.1.2 Current and future socioeconomic development patterns

8.3.1.2.1 Material and energy content of development in industrialized countries

8.3.1.2.2 Links among energy, transport, and urban planning

8.3.2 Modelling development paths and mitigation costs

8.3.2.1 Prediction and simulation: The need for multiple baselines

8.3.2.2 Economic modelling and development trends: Some limits

8.3.3 Multiple baselines, uncertainty, and long-term mitigation costs

8.3.3.1 Multiple baselines and the noncomparability of cost assessments

8.3.3.2 The meaning of the baseline

8.4 Differences among Models and their Results

8.4.1 General methodological considerations

8.4.2 Critical dimensions of a typology of existing models

8.4.2.1 Diversity of models, diversity of purposes

8.4.2.2 The structure of existing models

8.4.2.3 The role of key input assumptions

8.4.3 The top-down versus bottom-up modelling controversy: Some lessons from the energy field

8.4.4 Beyond energy: Carbon sinks and nonenergy greenhouse gas emissions

8.4.4.1 Carbon sequestration studies

Endnotes

References
1 Scope of the Report |
1.1 Background 19 |
1.2 Broadening the Context of Climate Change Mitigation 19 |
1.3 Integrating the Various Perspectives 20 |

2 Greenhouse Gas Emissions Scenarios 21 |
2.1 Scenarios 21 |
2.2 Greenhouse Gas Emissions Mitigation Scenarios 21 |
2.3 Global Futures Scenarios 22 |
2.4 Special Report on Emissions Scenarios 23 |
2.5 Review of Post-SRES Mitigation Scenarios 24 |

3 Technological and Economic Potential of Mitigation Options 26 |
3.1 Key Developments in Knowledge about Technological Options to Mitigate GHG Emissions in the Period up to 2010-2020 since the Second Assessment Report 26 |
3.2 Trends in Energy Use and Associated Greenhouse Gas Emissions 27 |
3.3 Sectoral Mitigation Technological Options 28 |
3.3.1 The Main Mitigation Options in the Building Sector 29 |
3.3.2 The Main Mitigation Options in the Transport Sector 38 |
3.3.3 The Main Mitigation Options in the Industry Sector 38 |
3.3.4 The Main Mitigation Options in the Agricultural Sector 39 |
3.3.5 The Main Mitigation Options in the Waste Management Sector 39 |
3.3.6 The Main Mitigation Options in the Energy Supply Sector 39 |
3.3.7 The Main Mitigation Options for Hydrofluorocarbons and Perfluorocarbons 40 |
3.4 The Technological and Economic Potential of Greenhouse Gas Mitigation: Synthesis 40 |

4 Technological and Economic Potential of Options to Enhance, Maintain, and Manage Biological Carbon Reservoirs and Geo-engineering 41 |
4.1 Mitigation through Terrestrial Ecosystem and Land Management 41 |
4.2 Social and Economic Considerations 42 |
4.3 Mitigation Options 42 |

5 Barriers, Opportunities, and Market Potential of Technologies and Practices 44 |
5.1 Introduction 44 |
5.2 Sources of Barriers and Opportunities 44 |
5.3 Sector- and Technology-specific Barriers and Opportunities 47 |

6 Policies, Measures, and Instruments 48 |
6.1 Policy Instruments and Possible Criteria for their Assessment 48 |
6.2 National Policies, Measures, and Instruments 49 |
6.3 International Policies and Measures 50 |
6.4 Implementation of National and International Policy Instruments 50 |

7 Costing Methodologies 51 |
7.1 Conceptual Basis 51 |
7.2 Analytical Approaches 51 |
7.2.1 Co-Benefits and Costs and Ancillary Benefits and Costs 51 |
7.2.2 Implementation Costs 52 |
7.2.3 Discounting 52 |
7.2.4 Adaptation and Mitigation Costs and the Link between Them 52 |
7.3 System Boundaries: Project, Sector, and Macro 52 |
7.3.1 Baselines 52 |
7.3.2 Consideration of No Regrets Option 52 |
7.3.3 Flexibility 53 |
7.3.4 Development, Equity and Sustainability Issues 53 |
7.4 Special Issues Relating to Developing Countries and EITs 53 |
7.5 Modelling Approaches to Cost Assessment 54 |

8 Global, Regional, and National Costs and Ancillary Benefits 54 |
8.1 Introduction 54 |
8.2 Gross Costs of GHG Abatement in Technology-detailed Models 54 |
8.3 Costs of Domestic Policy to Mitigate Carbon Emissions 55 |
8.4 Distributional Effects of Carbon Taxes 56
AR4 (2007): Mitigation of climate change

Summary for Policymakers

Technical Summary

1 Introduction
2 Framing issues
3 Issues related to mitigation in the long term context
4 Energy supply
5 Transport and its infrastructure
6 Residential and commercial buildings
7 Industry
8 Agriculture
9 Forestry
10 Waste management
11 Mitigation from a cross sectoral perspective
12 Sustainable Development and mitigation
13 Policies, instruments and co-operative agreements
AR5 (2014): Mitigation of climate change

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Introductory Chapter</td>
<td>111</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Integrated Risk and Uncertainty Assessment of Climate Change Response Policies</td>
<td>151</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Social, Economic, and Ethical Concepts and Methods</td>
<td>207</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Sustainable Development and Equity</td>
<td>283</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Drivers, Trends and Mitigation</td>
<td>351</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Assessing Transformation Pathways</td>
<td>413</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Energy Systems</td>
<td>511</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Transport</td>
<td>599</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Buildings</td>
<td>671</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Industry</td>
<td>739</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Agriculture, Forestry and Other Land Use (AFOLU)</td>
<td>811</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Human Settlements, Infrastructure, and Spatial Planning</td>
<td>923</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>International Cooperation: Agreements & Instruments</td>
<td>1001</td>
</tr>
<tr>
<td>Chapter 14</td>
<td>Regional Development and Cooperation</td>
<td>1083</td>
</tr>
<tr>
<td>Chapter 15</td>
<td>National and Sub-national Policies and Institutions</td>
<td>1141</td>
</tr>
<tr>
<td>Chapter 16</td>
<td>Cross-cutting Investment and Finance Issues</td>
<td>1207</td>
</tr>
<tr>
<td>Annex I</td>
<td>Glossary, Acronyms and Chemical Symbols</td>
<td>1249</td>
</tr>
<tr>
<td>Annex II</td>
<td>Metrics & Methodology</td>
<td>1281</td>
</tr>
<tr>
<td>Annex III</td>
<td>Technology-specific Cost and Performance Parameters</td>
<td>1329</td>
</tr>
</tbody>
</table>
AR5, ch7: Energy systems

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>518</td>
</tr>
<tr>
<td>7.2</td>
<td>Energy production, conversion, transmission and distribution</td>
<td>519</td>
</tr>
<tr>
<td>7.3</td>
<td>New developments in emission trends and drivers</td>
<td>522</td>
</tr>
<tr>
<td>7.4</td>
<td>Resources and resource availability</td>
<td>524</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Fossil fuels</td>
<td>524</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Renewable energy</td>
<td>525</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Nuclear energy</td>
<td>526</td>
</tr>
<tr>
<td>7.5</td>
<td>Mitigation technology options, practices and behavioral aspects</td>
<td>527</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Fossil fuel extraction, conversion, and fuel switching</td>
<td>527</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Energy efficiency in transmission and distribution</td>
<td>528</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Renewable energy technologies</td>
<td>528</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Nuclear energy</td>
<td>530</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Carbon dioxide capture and storage (CCS)</td>
<td>532</td>
</tr>
<tr>
<td>7.6</td>
<td>Infrastructure and systemic perspectives</td>
<td>534</td>
</tr>
<tr>
<td>7.6.1</td>
<td>Electrical power systems</td>
<td>534</td>
</tr>
<tr>
<td>7.6.1.1</td>
<td>System balancing—flexible generation and loads</td>
<td>534</td>
</tr>
<tr>
<td>7.6.1.2</td>
<td>Capacity adequacy</td>
<td>535</td>
</tr>
<tr>
<td>7.6.1.3</td>
<td>Transmission and distribution</td>
<td>535</td>
</tr>
<tr>
<td>7.6.2</td>
<td>Heating and cooling networks</td>
<td>535</td>
</tr>
<tr>
<td>7.6.3</td>
<td>Fuel supply systems</td>
<td>536</td>
</tr>
<tr>
<td>7.6.4</td>
<td>CO₂ transport</td>
<td>536</td>
</tr>
</tbody>
</table>
AR5, ch7: Energy systems

7.7 Climate change feedback and interaction with adaptation .. 537

7.8 Costs and potentials .. 538
 7.8.1 Potential emission reduction from mitigation measures 538
 7.8.2 Cost assessment of mitigation measures .. 542
 7.8.3 Economic potentials of mitigation measures .. 543

7.9 Co-benefits, risks and spillovers .. 544
 7.9.1 Socio-economic effects .. 544
 7.9.2 Environmental and health effects ... 546
 7.9.3 Technical risks .. 549
 7.9.4 Public perception ... 551

7.10 Barriers and opportunities .. 551
 7.10.1 Technical aspects ... 551
 7.10.2 Financial and investment barriers and opportunities ... 552
 7.10.3 Cultural, institutional, and legal barriers and opportunities 552
 7.10.4 Human capital capacity building ... 553
 7.10.5 Inertia in energy systems physical capital stock turnover 553

7.11 Sectoral implication of transformation pathways and sustainable development 554
 7.11.1 Energy-related greenhouse gas emissions ... 554
 7.11.2 Energy supply in low-stabilization scenarios .. 555
 7.11.3 Role of the electricity sector in climate change mitigation 559
 7.11.4 Relationship between short-term action and long-term targets 562
AR5, ch7: Energy systems

7.12 Sectoral policies

7.12.1 Economic instruments

7.12.2 Regulatory approaches

7.12.3 Information programmes

7.12.4 Government provision of public goods or services

7.12.5 Voluntary actions

7.13 Gaps in knowledge and data

7.14 Frequently Asked Questions
• **Energy is the main issue.**

• **It is also the main solution.**

• The energy supply sector is the largest contributor to global greenhouse gas emissions (robust evidence, high agreement).

• In the baseline scenarios assessed in AR5, direct CO2 emissions of the energy supply sector increase from 14.4 GtCO2 / yr in 2010 to 24 – 33 GtCO2 / yr in 2050 (25 – 75th percentile; full range 15 – 42 GtCO2 / yr), with most of the baseline scenarios assessed in AR5 showing a significant increase (medium evidence, medium agreement).

• Multiple options exist to reduce energy supply sector GHG emissions (robust evidence, high agreement). These include energy efficiency improvements and fugitive emission reductions in fuel extraction as well as in energy conversion, transmission, and distribution systems; fossil fuel switching; and low-GHG energy generation options. Examples include renewable energy (RE), nuclear power, and carbon dioxide capture and storage (CCS).

• The stabilization of GHG concentrations at low levels requires a fundamental transformation of the energy supply system, including the long-term substitution of unabated fossil fuel conversion technologies by low-GHG alternatives (robust evidence, high agreement).

• Decarbonizing (i.e. reducing the carbon intensity of) electricity generation is a key component of cost-effective mitigation strategies in the climate policy scenarios (430 – 530 ppm CO2eq); in most integrated modelling scenarios, decarbonization happens more rapidly in electricity generation than in the industry, buildings and transport sectors (medium evidence, high agreement).
Key messages from AR5 ch7 on energy systems (2/3)

- Since the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4), many RE technologies have demonstrated substantial performance improvements and cost reductions, and a growing number of RE technologies have achieved a level of maturity to enable deployment at significant scale (robust evidence, high agreement).

- There are often co-benefits from the use of RE, such as a reduction of air pollution, local employment opportunities, few severe accidents compared to some other forms of energy supply as well as improved energy access and security (medium evidence, medium agreement). At the same time, however, some RE technologies can have technology- and location-specific adverse side effects.

- Infrastructure and integration challenges vary by RE technology and the characteristics of the existing background energy system (medium evidence, medium agreement). Operating experience and studies of medium to high penetrations of RE indicate that these issues can be managed with various technical and institutional tools. As RE penetrations increase, such issues are more challenging. They must be carefully monitored to achieve reliable and cost-effective energy supply, and may result in higher costs.

- Nuclear energy is a mature, low GHG emission source of baseload power, but its share of global electricity generation has been declining (since 1993). Nuclear energy could make an increasing contribution to low-carbon energy supply, but a variety of barriers and risks exist (robust evidence, high agreement).

- Barriers to and risks associated with an increasing use of nuclear energy include operational risks and the associated safety concerns, uranium mining risks, financial and regulatory risks, uncoordinated waste management issues, nuclear weapon proliferation concerns, and adverse public opinion (robust evidence, high agreement).

- Carbon dioxide capture and storage technologies could become part of the solution... but is still very uncertain.

- Carbon capture and storage could become part of the solution... but is still very uncertain.

- Renewable energy technologies are part of the solution... but come with some challenges.

- Carbon capture and storage could become part of the solution... but is still very uncertain.

- Replacing coal with gas in power generation can reduce emissions (if...).
Key messages from AR5 ch7 on energy systems (3/3)

- Some policies have been implemented with some successes.
- More policies are needed.
- Governance and finance are key.
- Development needs should not be forgotten.

- Greenhouse gas emission trading and GHG taxes have been enacted to address the market externalities associated with GHG emissions (high evidence, high agreement).
- The success of energy policies depends on capacity building, the removal of financial barriers, the development of a solid legal framework, and sufficient regulatory stability (robust evidence, high agreement).
- The energy infrastructure in developing countries, especially in Least Developed Countries (LDCs), is still undeveloped and not diversified (robust evidence, high agreement).
What is missing?

- How are the key words from the program of this week treated?

<table>
<thead>
<tr>
<th>Category</th>
<th>Key Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>macroeconomy/macroeconomic</td>
<td>materials</td>
</tr>
<tr>
<td>stock-flow</td>
<td>grid stability</td>
</tr>
<tr>
<td>finance</td>
<td>energy storage</td>
</tr>
<tr>
<td></td>
<td>history of energy transitions</td>
</tr>
<tr>
<td></td>
<td>decentralization</td>
</tr>
<tr>
<td></td>
<td>governance</td>
</tr>
<tr>
<td></td>
<td>commons</td>
</tr>
<tr>
<td></td>
<td>inequalities</td>
</tr>
<tr>
<td>term</td>
<td>description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>macroeconomy/macroeconomic</td>
<td>1 occurrence of « macroeconomy » in the whole 1494 pages! / macroeconomic appears often [mainly « macroeconomic costs » or « macroeconomic context »]</td>
</tr>
<tr>
<td>stock-flow</td>
<td>0 occurrence [but a number of the models used are in fact stock-flow consistent],</td>
</tr>
<tr>
<td>finance</td>
<td>treated in short (3/4 page) section « 7.10.2 Financial and investment barriers and Opportunities » [but also a dedicated chapter 16]</td>
</tr>
<tr>
<td>materials</td>
<td>a short section in Chapter 7</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>grid stability</td>
<td>0 occurrence [but treated under section « 7.6.1.1 System balancing — flexible generation and loads », with 42 references cited]</td>
</tr>
<tr>
<td>energy storage</td>
<td>2 paragraphs</td>
</tr>
</tbody>
</table>
Materials

• Competition for land and other resources among different RE sources may impact aggregate technical potentials, as might concerns about the carbon footprint and sustainability of the resource (e.g., biomass) as well as materials demands (cf. Annex Bioenergy in Chapter 11; de Vries et al., 2007; Kleijn and van der Voet, 2010; Graedel, 2011).

• Wind, ocean, and CSP need more iron and cement than fossil fuel fired power plants, while photovoltaic power relies on a range of scarce materials (Burkhardt et al., 2011; Graedel, 2011; Kleijn et al., 2011; Arvesen and Hertwich, 2011). Furthermore, mining and material processing is associated with environmental impacts (Norgate et al., 2007), which make a substantial contribution to the total life-cycle impacts of renewable power systems. There has been a significant concern about the availability of critical metals and the environmental impacts associated with their production. Silver, tellurium, indium, and gallium have been identified as metals potentially constraining the choice of PV technology, but not presenting a fundamental obstacle to PV deployment (Graedel, 2011; Zuser and Rechberger, 2011; Fthenakis and Anctil, 2013; Ravikumar and Malghan, 2013). Silver is also a concern for CSP (Pihl et al., 2012). The limited availability of rare earth elements used to construct powerful permanent magnets, especially dysprosium and neodymium, may limit the application of efficient direct-drive wind turbines (Hoenderdaal et al., 2013). Recycling is necessary to ensure the long-term supply of critical metals and may also reduce environmental impacts compared to virgin materials (Anctil and Fthenakis, 2013; Binnemans et al., 2013). With improvements in the performance of renewable energy systems in recent years, their specific material demand and environmental impacts have also declined (Arvesen and Hertwich, 2011; Caduff et al., 2012).

• [15 references]
Energy storage

- Energy storage might play an increasing role in the field of system balancing (Zafirakis et al., 2013). Today pumped hydro storage is the only widely deployed storage technology (Kanakasabapathy, 2013). Other storage technologies including compressed air energy storage (CAES) and batteries may be deployed at greater scale within centralized power systems in the future (Pickard et al., 2009a; b; Roberts and Sandberg, 2011), and the latter can be decentralized. These short-term storage resources can be used to compensate the day-night cycle of solar and short-term fluctuation of wind power (Denholm and Sioshansi, 2009; Chen et al., 2009; Loisel et al., 2010; Beaudin et al., 2010). With the exception of pumped hydro storage, full (levelized) storage costs are still high, but storage costs are expected to decline with technology development (IEA, 2009b; Deane et al., 2010; Dunn et al., 2011; EIA, 2012). ‘Power to heat’ and ‘power to gas’ (H2 or methane) technologies might allow for translating surplus renewable electricity into other useful final energy forms (see Sections 7.6.2 and 7.6.3).

- The addition of significant plants with low capacity credit can lead to the need for a higher planning-reserve margin (defined as the ratio of the sum of the nameplate capacity of all generation to peak demand) to ensure the same degree of system reliability. If specifically tied to RE generation, energy storage can increase the capacity credit of that source; for example, the capacity credit of CSP with thermal storage is greater than without thermal storage (Madaeni et al., 2011).

- [13 references]
<p>| history of energy transitions | 0 occurrence [history twice, once about the history of EU-ETS, once about the history of energy security concepts] |</p>
<table>
<thead>
<tr>
<th>Topic</th>
<th>Frequency and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>decentralization</td>
<td>10 times in chapter 7, but also in chapters « Human settlements, infrastructure and spatial planning » and « National and sub-national policies and institutions » (with limited treatment)</td>
</tr>
<tr>
<td>governance</td>
<td>5 occurrences in chapter 7, but many occurrences in chapters 12-13-14-15-16</td>
</tr>
<tr>
<td>commons</td>
<td>0 occurrences in chapter 7, but some occurrences in chapters 3, 4, 13 and 15 [but only in the phrase « global commons », nothing on local commons]
- note: in SPM, « negociations » at General Assembly have relegated the commons concept to a simple footnote</td>
</tr>
<tr>
<td>inequalities</td>
<td>0 occurrences in chapter 7, but many in chapters 3 and 4 [but very few in the « policy » chapters]</td>
</tr>
</tbody>
</table>

Remark: also an issue that the treatment of commons and inequalities is separated (in chapters 3 and 4) from that of governance (in chapters 12 to 16).
What is missing?

• How are the key words from the program of this week treated?
• Gaps in knowledge identified in chapter 7
• The diversity of energy statistic and GHG emission accounting methodologies as well as several years delay in the availability of energy statistics data limit reliable descriptions of current and historic energy use and emission data.

• Although fundamental problems in identifying fossil fuel and nuclear resource deposits, the extent of potential carbon storage sites and technical potentials of RE are acknowledged, the development of unified and consistent reporting schemes, the collection of additional field data, and further geological modelling activities could reduce the currently existing uncertainties.

• There is a gap in our knowledge concerning fugitive CH4 emissions as well as adverse environmental side effects associated with the increasing exploitation of unconventional fossil fuels. Operational and supply chain risks of nuclear power plants, the safety of CCS storage sites, and adverse side effects of some RE, especially biomass and hydropower, are often highly dependent on the selected technologies and the locational and regulatory context in which they are applied. Further research could, in part, reduce the associated knowledge gaps.

• There is limited research on the integration issues associated with high levels of low-carbon technology utilization.

• Knowledge gaps pertain to the regional and local impacts of climate change on the technical potential for renewable energy and appropriate adaptation, design, and operational strategies to minimize the impact of climate change on energy infrastructure.

• The current literature provides a limited number of comprehensive studies on the economic, environmental, social, and cultural implications that are associated with low-carbon emission paths. Especially, there is a lack of consistent and comprehensive studies concerning the current cost of sourcing and using unconventional fossil fuels, RE, nuclear power, and the expected ones for CCS and BECCS. In addition, there is a lack of globally comprehensive knowledge concerning the cost of supply and GHG related mitigation options.

• Integrated decision making requires further development of energy market models as well as integrated assessment modelling frameworks, accounting for the range of possible co-benefits and tradeoff between different policies in the energy sector that tackle energy access, energy security, and / or environmental concerns.

• Research on the effectiveness and cost-efficiency of climate related energy policies and especially concerning their interaction with other policies in the energy sector is limited.
What is missing?

• How are the key words from the program of this week treated?
• Gaps in knowledge identified in chapter 7
• Other Gaps:
 • Life-cycle assessment and material flow analysis?
 • Cross-sectoral issues, systemic issues?
 • Energy-growth-development nexus?
 • Social sciences relevant to energy-demand behaviors and policies?
Will AR6 be better?
The Sixth Assessment cycle

Special Reports
- **October 2018**: Global warming of 1.5°C
 An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.

- **August 2019**: Climate Change and Land:
 An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.

Methodology Report

Sixth Assessment Report
- **April 2021**: Working Group I contribution
 The physical science basis.

- **July 2021**: Working Group III contribution
 Mitigation of climate change.

- **October 2021**: Working Group II contribution
 Impacts, adaptation and vulnerability.

- **April 2022**: Synthesis Report.
Chapter outline of the Working Group III contribution to the IPCC Sixth Assessment Report (AR6)

1. Introduction and Framing
2. Emissions trends and drivers
3. Mitigation pathways compatible with long-term goals
4. Mitigation and development pathways in the near- to mid-term
5. Demand, services and social aspects of mitigation
6. Energy systems
7. Agriculture, Forestry, and Other Land Uses (AFOLU)
8. Urban systems and other settlements
9. Buildings
10. Transport
11. Industry
12. Cross sectoral perspectives
13. National and sub-national policies and institutions
14. International cooperation
15. Investment and finance
16. Innovation, technology development and transfer
17. Accelerating the transition in the context of sustainable development
Chapter 6: Energy systems

- Energy services, energy systems and energy sector, integrations with other systems (including food supply system, buildings, transportation, industrial systems)
- Energy resources (fossil and non-fossil) and their regional distribution
- Global and regional new trends and drivers
- Policies and measures and other regulatory frameworks; and supply and demand systems
- Fugitive emissions and non-CO2 emissions
- Global and regional new trends for electricity and low carbon energy supply systems, including deployment and cost aspects.
- Smart energy systems, decentralized systems and the integration of the supply and demand
- Energy efficiency technologies and measures
- Mitigation options (including CCS), practices and behavioral aspects (including public perception and social acceptance)
- Interconnection, storage, infrastructure and lock-in
- The role of energy systems in long-term mitigation pathways
- Bridging long-term targets with short and mid-term policies
- Sectoral policies and goals (including feed-in tariffs, renewables obligations and others)
- Mainstreaming climate into energy policy
Chapter outline of the Working Group III contribution to the IPCC Sixth Assessment Report (AR6)

1. Introduction and Framing
2. Emissions trends and drivers
3. Mitigation pathways compatible with long-term goals
4. Mitigation and development pathways in the near- to mid-term
5. Demand, services and social aspects of mitigation
 • Sharing economy, collaborative consumption, community energy
6. Energy systems
7. Agriculture, Forestry, and Other Land Uses (AFOLU)
 • Provision of food, feed, fibre, wood, biomass for energy, and other ecosystem services and resources from land, including interactions in the context of mitigation strategies and pathways
8. Urban systems and other settlements
9. Buildings
 • Access to sector specific services (e.g. affordability, energy poverty)
10. Transport
 • Systemic interactions (e.g. energy sector, urban) and insights from life cycle assessment and material flow analysis
11. Industry
12. Cross sectoral perspectives
13. National and sub-national policies and institutions
14. International cooperation
15. Investment and finance
16. Innovation, technology development and transfer
17. Accelerating the transition in the context of sustainable development
Concluding remarks: Some remaining gaps?

• Beyond FAQ for communication?
 • FAQ 7.1 How much does the energy supply sector contribute to the GHG emissions?
 • FAQ 7.2 What are the main mitigation options in the energy supply sector?
 • FAQ 7.3 What barriers need to be overcome in the energy supply sector to enable a transformation to low-GHG emissions?

• Limits of SPM for communication (all the more as some elements do not make it to the SPM – eg. regional disaggregation of emissions trends, policy evaluations)?

• ...
Thank you for your attention!
... and your questions?

The energy of IPCC...
....or the IPCC of energy

Celine Guivarch

guivarch@centre-cired.fr

Science and Energy, 2018
Ecole de Physique des Houches
5 march 2018